Git Integration Setup | CONFIDENTIAL

GIT INTEGRATION
SETUP GUIDE

Azure DevOps • GitHub • Branching • Workflows • Best Practices

Version 1.0 | January 2026

Table of Contents

1. Git Integration Overview
Fabric Git integration enables version control for workspace items, supporting collaborative development, change tracking, and deployment automation.
1.1 Supported Git Providers
	Provider
	Requirements

	Azure DevOps
	Azure DevOps Services or Server 2020+

	GitHub
	GitHub.com or GitHub Enterprise

1.2 Supported Item Types
1. Notebooks (PySpark, SQL)
1. Semantic models (Power BI datasets)
1. Reports (Power BI reports)
1. Pipelines (Data Factory)
1. Dataflows Gen2
1. Spark job definitions
1.3 Items Not Supported
1. Lakehouse tables (data is not versioned)
1. Warehouse objects (T-SQL not in Git)
1. Eventstreams
1. KQL databases

2. Setup Configuration
2.1 Prerequisites
1. Fabric workspace admin role
1. Git repository with write access
1. Azure AD authentication configured
1. Fabric tenant setting enabled for Git
2.2 Azure DevOps Setup
Step 1: Create Repository
Repository Structure:
/
├── Claims-Analytics/ # Workspace folder
│ ├── .pbi/ # Semantic model
│ ├── Notebooks/ # Spark notebooks
│ ├── Reports/ # Power BI reports
│ └── Pipelines/ # Data pipelines
├── Member-360/ # Another workspace
└── README.md
Step 2: Connect Workspace
1. 1. Open Fabric workspace settings
1. 2. Select 'Git integration'
1. 3. Choose Azure DevOps
1. 4. Select Organization, Project, Repository
1. 5. Choose Branch (main or develop)
1. 6. Set folder path for workspace
2.3 GitHub Setup
1. 1. Create GitHub App or use personal token
1. 2. Configure in Fabric workspace settings
1. 3. Authorize GitHub connection
1. 4. Select repository and branch
1. 5. Map workspace folder

3. Branching Strategy
3.1 Recommended Branch Model
Branch Structure:

main (Production)
 │
 └── release/* (Release candidates)
 │
 └── develop (Integration)
 │
 ├── feature/* (New features)
 └── bugfix/* (Bug fixes)
3.2 Branch Purposes
	Branch
	Purpose

	main
	Production-ready code, protected

	develop
	Integration branch, CI builds

	feature/*
	New feature development

	release/*
	Release preparation and testing

	bugfix/*
	Bug fixes for develop

	hotfix/*
	Emergency fixes for production

3.3 Workspace to Branch Mapping
	Workspace
	Branch
	Auto-Deploy

	Claims-Dev
	develop
	On commit

	Claims-Test
	release/*
	Manual

	Claims-Prod
	main
	Manual + approval

4. Sync Workflows
4.1 Commit Changes
1. 1. Make changes in Fabric workspace
1. 2. Open Source control panel
1. 3. Review changed items
1. 4. Add commit message
1. 5. Commit to connected branch
1. 6. Push to remote (if not auto-push)
4.2 Update from Git
1. 1. Open Source control panel
1. 2. Click 'Update all'
1. 3. Review incoming changes
1. 4. Resolve conflicts if any
1. 5. Complete update
4.3 Conflict Resolution
1. Conflicts occur when same item changed in both
1. Options: Accept workspace, Accept Git, Manual merge
1. For notebooks: Use diff view
1. Recommendation: Avoid concurrent edits

5. Item Serialization
5.1 Notebook Format
.platform file:
{
 "$schema": "https://...",
 "config": {
 "version": "2.0",
 "logicalId": "notebook-guid"
 }
}

.py file:
Fabric notebook content
spark.sql("SELECT * FROM table")
5.2 Semantic Model Format
1. TMDL format (Tabular Model Definition Language)
1. Human-readable, diff-friendly
1. Separate files for tables, measures, relationships
1. Compatible with Analysis Services tooling
5.3 Report Format
1. PBIR format (Power BI Report)
1. JSON-based definition
1. Separate from semantic model
1. Includes visual configurations

6. Best Practices
6.1 Development Workflow
1. Create feature branch for each work item
1. Make small, focused commits
1. Write meaningful commit messages
1. Pull/update before starting work
1. Use pull requests for code review
1. Delete branches after merge
6.2 Naming Conventions
	Element
	Convention
	Example

	Feature branch
	feature/[ticket]-[desc]
	feature/JHP-123-claims-etl

	Bugfix branch
	bugfix/[ticket]-[desc]
	bugfix/JHP-456-fix-null

	Commit message
	[ticket]: [action] [subject]
	JHP-123: Add claims notebook

6.3 Security Considerations
1. Never commit credentials or secrets
1. Use Fabric managed identity for connections
1. Store secrets in Key Vault
1. Review changes before committing
1. Enable branch protection policies

Appendix: Document Information
	Document Title
	Git Integration Setup Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
